Molecular epidemiology of antimalarial drug resistance

Philip Rosenthal
University of California, San Francisco
Global Burden of Malaria

- 300-500 million clinical cases and 1-2 million deaths/year
- Control hindered by increasing drug resistance
Burden of Malaria in Africa

- Nearly all malaria in Africa caused by *P. falciparum*
- African children account for 75% of morbidity and 90% of mortality
- One African child dies of malaria every 30 seconds
Chemotherapy of malaria

- Treatment of severe malaria
 - Quinine
 - Artemisinins will probably replace quinine
- Treatment of uncomplicated malaria
 - Complicated by resistance to older drugs
 - Artemisinin-based combination therapy
- Prevention of malaria
 - Travelers
 - Intermittent preventive tx
 - IPTp
 - IPTi
Available antimalarial drugs – Developing countries

- Chloroquine
- Amodiaquine
- Sulfadoxine/pyrimethamine (SP, Fansidar)
- Chlorproguanil/dapsone (Lapdap)
- Quinine
- Primaquine
- Artemisinin-based combination therapy (ACT)
 - Artemether/lumefantrine (Coartem)
 - Artesunate/amodiaquine (ASAQ)
 - Artesunate/SP
 - Artesunate/mefloquine
 - Dihydroartemisinin/piperaquine
 - Artesunate/chlorproguanil/dapsone (CDA)
Field-based studies of antimalarial drug resistance

• What is the extent of drug resistance?
• What are the molecular predictors of drug resistance?
• Are modern antimalarial regimens selecting for resistant parasites?
Means of identifying emerging drug resistance

• Clinical trials
• Association of resistance-mediating parasite polymorphisms with subsequent drug failure
• Selection of parasites with resistance-mediating mutations or altered in vitro sensitivity by prior therapy
Resistance to CQ

- Principally mediated by mutations in pfcrtr
 - 76T is the key mediator of resistance
 - Other pfcrtr mutations appear necessary to maintain fitness of resistant parasites
- Mutations in pfmdr1 and other genes likely contribute to resistance
Resistance to CQ in Africa

- The horse is out of the barn
- Uganda - Prevalence of pfcrt 76T nearly 100%
- Burkina Faso - Prevalence 76T lower, but increasing
- Malawi - Prevalence 76T and clinical resistance have decreased with elimination of CQ use in early 1990s
What about amodiaquine?

- AQ resistance is much less common than CQ resistance, but mechanisms of resistance are probably similar.
- AQ resistance not well studied clinically
- Does AQ select for any mutations of interest?
 - Selects for key mutations in pfcrt (76T) and pfmdr1 (86Y)
Antifolates in widespread use

<table>
<thead>
<tr>
<th>Drug</th>
<th>DHFR inhibitor</th>
<th>DHPS inhibitor</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP/SMX</td>
<td>Trimethoprim</td>
<td>Sulfamethoxazole</td>
<td>Antibacterial; Prophylaxis in AIDS patients</td>
</tr>
<tr>
<td>SP (Fansidar)</td>
<td>Pyrimethamine</td>
<td>Sulfadoxine</td>
<td>Antimalarial</td>
</tr>
<tr>
<td>Lapdap</td>
<td>Chlorproguanil</td>
<td>Dapsone</td>
<td>Antimalarial</td>
</tr>
<tr>
<td>Malarone</td>
<td>Proguanil (+ Atovaquone)</td>
<td></td>
<td>Antimalarial</td>
</tr>
</tbody>
</table>
Why do we care about resistance to SP?

- SP is no longer recommended for tx in most countries.
- SP is still quite heavily used.
- SP is the only proven drug for IPT, and is recommended and heavily used for this purpose.
- Chlorproguanil-dapsone (Lapdap) is a new approved drug and CDA is under advanced development. Resistance to SP may predict resistance to CD.
DHFR mutations and resistance

• Step-wise progression:
 – S108N → N51I → C59R
 – This “triple mutant” is now common in Africa.
 – The triple mutant predicts moderate resistance to SP, but parasites remain sensitive to cycloguanil.

• Additional mutations
 – S108T+A16V; I164L; E30”Bolivia repeat”; C50R
 – Common in parts of Asia and South America
 – Mediate higher-level resistance to multiple antifolates.
DHPS mutations and resistance

• Sulfas and sulfones are relatively poor antimalarials, but are valuable components of combination therapies.
• Step-wise progression less clearly delineated than for DHFR
• Key mutations in Africa: A437G; K540E
• Other mutations seen in Asia and/or South America: S436A; A581G; A613T/S
Selection of polymorphisms by SP and AQ in Burkina Faso

Dokomajilar, et al., 2006, AJTMH 75:162
Importance of dhps 540E in activity of SP-containing regimens- Uganda

Dorsey, et al. AJTMH 2004, 71:758
What will be the impact of TMP/SMX?

- Prophylaxis with TMP/SMX becoming standard in HIV-infected children in Africa
- Does TMP/SMX select for SP-resistant parasites?
- Does TMP/SMX offer protection against malaria?
TMP/SMX prophylaxis in AIDS pts
What is the impact on malaria?

Oct. 2005

561 healthy children
None taking TMP/SMX
6% report ITN use

May - June 2006
All children given ITN

519 children remaining
100% ITN use

300 HIV-infected children
All taking TMP/SMX
88% report ITN use
(remainder given ITNs)

August 2006

290 children remaining
100% ITN use

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>HIV-infected children (n=300)</th>
<th>Healthy children (n=561)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>162 (54%)</td>
<td>266 (47%)</td>
</tr>
<tr>
<td>Mean age yrs (SD)</td>
<td>5.6 (2.6)</td>
<td>6.5 (2.6)</td>
</tr>
<tr>
<td>Parasite prevalence (enrollment)</td>
<td>0 (0%)</td>
<td>113 (20%)</td>
</tr>
<tr>
<td>% CD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>21% (15-28%)</td>
<td>N/A</td>
</tr>
<tr>
<td>< 15%</td>
<td>74 (25%)</td>
<td></td>
</tr>
<tr>
<td>15-20%</td>
<td>64 (21%)</td>
<td></td>
</tr>
<tr>
<td>>20%</td>
<td>162 (54%)</td>
<td></td>
</tr>
<tr>
<td>ARV use</td>
<td>35 (12%)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Effect of TMP/SMX and ITN use on malaria incidence

<table>
<thead>
<tr>
<th>Exposure Group</th>
<th>IRR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No TMP/SMX, No ITN</td>
<td>Reference group</td>
<td></td>
</tr>
<tr>
<td>TMP/SMX prophylaxis alone</td>
<td>0.65 (0.27-1.57)</td>
<td>0.34</td>
</tr>
<tr>
<td>ITN alone</td>
<td>0.56 (0.45-0.70)</td>
<td><0.001</td>
</tr>
<tr>
<td>Both TMP/SMX and ITN</td>
<td>0.03 (0.01-0.11)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Did TMP/SMX use select for dhfr/dhps polymorphisms?

<table>
<thead>
<tr>
<th></th>
<th>HIV-infected</th>
<th>Community-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 9)</td>
<td>(n = 440)</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>6.8 (2.6)</td>
<td>6.8 (2.7)</td>
</tr>
<tr>
<td>Infection with P. falciparum</td>
<td>9 (100%)</td>
<td>419 (95%)</td>
</tr>
<tr>
<td>Geometric mean parasite density</td>
<td>2769/µL</td>
<td>11791/µL</td>
</tr>
<tr>
<td>Mean temperature °C (SD)</td>
<td>37.3 (1.0)</td>
<td>37.7 (1.3)</td>
</tr>
<tr>
<td>Prevalence of dhfr/dhps mutations(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dhfr 511</td>
<td>9/9 (100%)</td>
<td>79/80 (99%)</td>
</tr>
<tr>
<td>dhfr 59R</td>
<td>9/9 (100%)</td>
<td>65/80 (81%)</td>
</tr>
<tr>
<td>dhfr 108N</td>
<td>9/9 (100%)</td>
<td>80/80 (100%)</td>
</tr>
<tr>
<td>dhfr 164L</td>
<td>1/9 (11%)</td>
<td>0/80 (0%)</td>
</tr>
<tr>
<td>dhps 437G</td>
<td>9/9 (100%)</td>
<td>77/80 (96%)</td>
</tr>
<tr>
<td>dhps 540E</td>
<td>9/9 (100%)</td>
<td>76/80 (95%)</td>
</tr>
</tbody>
</table>

Did TMP/SMX use select for dhfr/dhps polymorphisms?

<table>
<thead>
<tr>
<th></th>
<th>HIV-infected (n = 9)</th>
<th>Community-based (n = 440)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>6.8 (2.6)</td>
<td>6.8 (2.7)</td>
</tr>
<tr>
<td>Infection with P. falciparum</td>
<td>9 (100%)</td>
<td>419 (95%)</td>
</tr>
<tr>
<td>Geometric mean parasite density</td>
<td>2769/μL</td>
<td>11791/μL</td>
</tr>
<tr>
<td>Mean temperature °C (SD)</td>
<td>37.3 (1.0)</td>
<td>37.7 (1.3)</td>
</tr>
<tr>
<td>Prevalence of dhfr/dhps mutations<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dhfr 511</td>
<td>9/9 (100%)</td>
<td>79/80 (99%)</td>
</tr>
<tr>
<td>dhfr 59R</td>
<td>9/9 (100%)</td>
<td>65/80 (81%)</td>
</tr>
<tr>
<td>dhfr 108N</td>
<td>9/9 (100%)</td>
<td>80/80 (100%)</td>
</tr>
<tr>
<td>dhfr 164L</td>
<td>1/9 (11%)</td>
<td>0/80 (0%)</td>
</tr>
<tr>
<td>dhps 437G</td>
<td>9/9 (100%)</td>
<td>77/80 (96%)</td>
</tr>
<tr>
<td>dhps 540E</td>
<td>9/9 (100%)</td>
<td>76/80 (95%)</td>
</tr>
</tbody>
</table>

Do antiretrovirals have antimalarial activity?

- HIV protease inhibitors block activity of an aspartic protease of HIV
- Malaria parasites express a family of aspartic proteases known as plasmepsins
- Plasmepsins I-IV and the HIV protease are biochemically quite similar
- Do HIV protease inhibitors inhibit plasmepsins and exert antimalarial activity?
In vitro antimalarial activity of HIV PIs

<table>
<thead>
<tr>
<th>Drug</th>
<th>P. falciparum IC$_{50}$ (μM)</th>
<th>Serum concentration with standard dosing (μM)</th>
<th>Serum concentration with boosted dosing (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HB3</td>
<td>D6</td>
<td>Dd2</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>5.6</td>
<td>4.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>4.7</td>
<td>7.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Indinavir</td>
<td>5.8</td>
<td>15.6</td>
<td>31.2</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>15.2</td>
<td>23.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Amprenavir</td>
<td>51.9</td>
<td>25.0</td>
<td>17.4</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>1.4</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>6.8</td>
<td>11.6</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Parikh, et al., AAC 49:2983, 2005
In vitro antimalarial activity of HIV PIs

<table>
<thead>
<tr>
<th>Drug</th>
<th>(P. falciparum \text{ IC}_{50} (\mu\text{M}))</th>
<th>Serum concentration with standard dosing ((\mu\text{M}))</th>
<th>Serum concentration with boosted dosing ((\mu\text{M}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HB3</td>
<td>D6</td>
<td>Dd2</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>5.6</td>
<td>4.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>4.7</td>
<td>7.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Indinavir</td>
<td>5.8</td>
<td>15.6</td>
<td>31.2</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>15.2</td>
<td>23.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Amprenavir</td>
<td>51.9</td>
<td>25.0</td>
<td>17.4</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>1.4</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>6.8</td>
<td>11.6</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Parikh, et al., AAC 49:2983, 2005
Effect of lopinavir on cultured *P. falciparum* parasites

A. 0h control 12h control 24h control 48h control

B. Lopinavir 12h lopinavir 24h lopinavir 48h lopinavir

Parikh, et al., AAC 49:2983, 2005
HIV PIs have antimalarial activity

- PIs might be lead compounds for new antimalarial drugs?
- An advantage of a PI based antiretroviral regimen might be prevention of malaria.
Artemisinins

- Extracted from *Artemisia annua*
- Used as herbal remedy for fevers in China for thousands of years (Qinghao)
- Active ingredient purified 1972 (Qinghaosu)
- Artemisinin and derivatives extensively tested in China beginning in late 1970s
- Used widely to treat malaria by 1980s in China, 1990s in other Asian countries
- Very rapid-acting
- Well-tolerated, minimal toxicity
- Short half-lives necessitate combination therapy
Artemisinin-based combination therapy

- Artemisinins very potent
- Short half-life of artemisinins helps to prevent selection resistant parasites
- Partner drugs have longer half-lives, and eliminate small numbers of remaining parasites
How should we treat malaria?
WHO recommendations

The following ACTs are currently recommended (alphabetical order):

- Artemether-Lumefantrine (Coartem)
- Artesunate + Amodiaquine
- Artesunate + Mefloquine
- Artesunate + Sulfadoxine–Pyrimethamine
- Amodiaquine + sulfadoxine–pyrimethamine

► Amodiaquine + sulfadoxine–pyrimethamine may be considered as an interim option where ACTs cannot be made available, provided that efficacy of both is high.

Guidelines for the Treatment of Malaria
WHO, 2006
How should we treat malaria?

WHO recommendations

The following ACTs are currently recommended (alphabetical order):

- Artemether-Lumefantrine (Coartem)
- Artesunate + Amodiaquine
- Artesunate + Mefloquine
- Artesunate + Sulfadoxine–Pyrimethamine

► Amodiaquine + sulfadoxine–pyrimethamine may be considered as an interim option where ACTs cannot be made available, provided that efficacy of both is high.

Guidelines for the Treatment of Malaria
WHO, 2006
How should we treat malaria?

WHO recommendations

The following ACTs are currently recommended (alphabetical order):

• Artemether-Lumefantrine (Coartem)
• Artesunate + Amodiaquine
• Artesunate + Mefloquine
• Artesunate + Sulfadoxine–Pyrimethamine

► Amodiaquine + sulfadoxine–pyrimethamine may be considered as an interim option where ACTs cannot be made available, provided that efficacy of both is high.

Guidelines for the Treatment of Malaria
WHO, 2006
Resistance to artemisinins

- Reports of decreased sensitivity of field isolates to artemisinins in S. America & Africa
- Resistant parasites have mutations in PfATP6, a Ca^{++} ATPase and putative drug target
- Resistant parasites have not been successfully cultured
- Stable artemisinin resistance has been selected in *P. chabaudi*
Resistance to artemisinin partner drugs- a key concern?

• Failures of mefloquine-artesunate seen in Thailand & Cambodia
• Amodiaquine- resistance already common in some areas
• Lumefantrine- no known resistance, but usage selects for Pfmdr1 polymorphisms associated with decreased sensitivity to halofantrine
• Piperaquine- resistance seen with monotherapy in China
Antimalarial efficacy of combination therapies in Kampala
(28-day outcomes from a longitudinal study)

- Recurrent parasitemia
- Treatment failure (recrudescence)

Dorsey, et al. JAMA, 2007
AQ + AS versus AM/LM at a very high transmission site: Tororo, Uganda
(28-day outcomes)

Antimalarial efficacy of combination therapies in Bobo-Dioulasso, Burkina Faso (28-day outcomes)

- Recurrent parasitemia
- Treatment failure (recrudescence)

- AQ/SP: 6% recurrent parasitemia, 4% treatment failure
- DHA/PQ: 2% recurrent parasitemia, 2% treatment failure
- AL: 20% recurrent parasitemia, 3% treatment failure

Zongo, et al., CID, in press
Are ACT partner drugs selecting for resistant parasites?

- AS/AQ
- Artemether-lumefantrine (AL)
- Dihydroartemisinin-piperaquine (DP)
Selection by AQ, SP, and lumefantrine- Burkina Faso

Selection by AS/AQ, Tororo, Uganda

Nsobya, et al. AAC 2007, 51:3023
Selection by AL: Tororo, Uganda

Dokomajilar, et al., AAC, 2006, 50:1893
Reciprocal drug resistance

- AQ selects for pfmdr1 86Y
 - This mutation leads to decreased AQ sensitivity
- MQ, related drugs (LU), and artemisinins select for pfmdr1 N86
 - This mutation probably leads to decreased LU sensitivity
- New combination therapies contain both classes AS/AQ↔AL
Selection for decreased in vitro drug sensitivity by AQ

Prior AQ: tx within prior 12 weeks
What about piperaquine?
Bobo-Dioulasso, Burkina Faso
(28-day outcomes)

- Piperaquine is chemically similar to CQ and AQ
- Piperaquine monotherapy was common in China in the 1980s
- Reports of high-level piperaquine resistance in China in 1980s-90s
- Preliminary studies- selection of pfmdr1 mutations seen with AQ *not* seen with DP (but numbers small)
Summary and Conclusions

• New ACTs are becoming the standard to treat malaria
• In general, the antimalarial efficacy of ACTs is currently outstanding
• Selection of resistance to artemisininins may be occurring
• Selection of resistance to ACT partner drugs is clearly occurring, and threatens the utility of these regimens
• Additional antimalarial regimens, including non-ACT regimens, are needed
Research Team

<table>
<thead>
<tr>
<th>UCSF</th>
<th>Makerere University, Uganda</th>
<th>IRSS, Burkina Faso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Dorsey</td>
<td>Moses Kamya</td>
<td>Jean-Bosco Ouedraogo</td>
</tr>
<tr>
<td>Sarah Staedke</td>
<td>Fred Kironde</td>
<td>Issaka Zongo</td>
</tr>
<tr>
<td>Steve Lamola</td>
<td>Juliet Babirye</td>
<td>Moise Lankoande</td>
</tr>
<tr>
<td>Will Nottingham</td>
<td>Anne Gasasira</td>
<td>Yves Sere</td>
</tr>
<tr>
<td>Adithya Cattamanchi</td>
<td>Denise Njama-Meya</td>
<td>Richard Osaliya</td>
</tr>
<tr>
<td>Sunil Parikh</td>
<td>Hakim Sendagire</td>
<td>Richard Barigye</td>
</tr>
<tr>
<td>Jonathan Vlahos</td>
<td>Sam Nsobya</td>
<td>JP Mpindi</td>
</tr>
<tr>
<td>Chris Dokomajilar</td>
<td>Joy Bossa</td>
<td></td>
</tr>
<tr>
<td>Heidi Hopkins</td>
<td>Ruth Namuyinga</td>
<td></td>
</tr>
<tr>
<td>Mady Slater</td>
<td>Julia Mwesigwa</td>
<td></td>
</tr>
<tr>
<td>Ben Hunt</td>
<td>Emmanuel Arinaitwe</td>
<td></td>
</tr>
<tr>
<td>Alissa Myrick</td>
<td>Florence Nankya</td>
<td></td>
</tr>
<tr>
<td>Tamara Clark</td>
<td>William Musoke</td>
<td></td>
</tr>
<tr>
<td>Erika Leeman</td>
<td>Margaret Karakire</td>
<td></td>
</tr>
<tr>
<td>Jen Davis</td>
<td>Norah Asaba</td>
<td></td>
</tr>
<tr>
<td>Damon Francis</td>
<td>Carol Bako</td>
<td></td>
</tr>
<tr>
<td>Sarah Kemble</td>
<td>Naome Kilama</td>
<td></td>
</tr>
<tr>
<td>Bryan Greenhouse</td>
<td>Maxwell Kilama</td>
<td></td>
</tr>
<tr>
<td>Chris Pietras</td>
<td>Regina Nakafeero</td>
<td></td>
</tr>
<tr>
<td>Lisa Bebell</td>
<td>Christopher Bongole</td>
<td></td>
</tr>
<tr>
<td>Sulggi Lee</td>
<td>Felix Jurua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irene Namukwaya</td>
<td></td>
</tr>
</tbody>
</table>