Synthetic Peroxides:
A Viable Alternative to Artemisinins

Jörg Möhrle
ARTEMISININ FORUM 2008
Guilin, 11 Nov 2008

Curing Malaria Together
www.mmv.org
Role of Artemisinins in the Treatment of Malaria

• Artemisinin derivatives are now the mainstay of treatment for malaria

• Since WHO endorsement of Artemisinin-based Combination Therapy (ACT) as 1st or 2nd line therapy for uncomplicated *P. falciparum* malaria:

 • Heavy reliance on the artemisinin component:
 • fast acting, highly effective against both *P. falciparum* and *P. vivax*
 • rapidly cleared; used in combination with a longer-acting partner drug

• But there are issues...
 • supply, cost, natural source
 • any clinical resistance to artemisinin will jeopardize ACT strategies
 • concerns regarding use in some special populations (infants, pregnancy)
Known Artemisinin Programmes

- Alternative Sources of Artemisinin / plant derived peroxides
 - One World Health, Amyris, Berkeley (yeast)
 - Dafra / Bouwmester (chicory)
 - Plant cell culture system (Russia, Japan and others)
 - Tobacco (Swiss)
 - Cameroon (Plant families)

- Fully Synthetics
 - Arterolane (OZ277/RBx11160), Ranbaxy (phase III)
 - University of Liverpool, (ANTIMAL programme) (candidate)
 - Ozonides OZ439 (MMV) (phase I)
MMV peroxide portfolio

- One ACT submitted for registration
- Two ACT and one mono-therapy currently in clinical trials
- Artemisinin Resistance Network
 - Testing our endoperoxide collections (8) against primary parasites from resistance areas (Laos, Cambodia, Thailand, Senegal) (ex vivo)
 - Clinical testing of novel endoperoxides in patients where PCT is increased: Artemifone
- Ozonides
Objectives: Synthetic Peroxides (OZ) Project

• **First Generation OZ project aimed to:**

 – identify a new class of peroxides

 – more potent than the currently available semi-synthetic artemisinin derivatives in reducing parasite burden

 – fully synthetic

 – low cost (< $1 USD per treatment when used in combination)

 – 3 day treatment regimen when used in combination

• **Next Generation OZ project extends these goals to also include:**

 – provision in combination of a single-dose oral cure for patients with uncomplicated *P. falciparum* malaria (and possibly *P. vivax*)

 – potential for prophylactic treatment and intermittent preventative treatment in pregnant women and infants (IPTp and IPTi)
First Generation of Synthetic Peroxides

OZ277 or RBx11160
What do we know about RBx11160?

• More active than chloroquine, mefloquine, and artemisinin derivatives against *P. falciparum in vitro*, and *P. berghei* in mice

• Good physicochemical and metabolic profile; good PK and oral bioavailability in rats and dogs; short half-life

• Excellent safety profile in rats, dogs and humans after single and repeat administration

• Similar exposure after single and repeat administration in humans; minimal food effects
Phase 1 Plasma Concentrations of RBx11160

Plasma concentrations after a single oral dose to healthy volunteers

- Excellent exposure at doses of 100 mg or above...
- Highly consistent with predictions based on animal data, but …
“Issues” that Arose with RBx11160 in Phase 2

- Significant reduction in drug plasma concentrations in malaria patients...
- Reduced exposure meant that it was unlikely to meet 3-day treatment regimen
- Phase II: Approx 70% efficacy (28 ACPR) with 7 days treatment
In Vitro Degradation in Infected Blood

- Rapid *in vitro* degradation of RBx11160 in infected blood
Second Generation of Synthetic Peroxides
Clearance in Red Blood Cells

- Fe(II)-mediated cleavage likely to be a significant contributor to the *in vivo* clearance of RBx11160

- Can we modify the ozonide structure to reduce the rate of cleavage without compromising biological activity?

- The answer is... **Yes**
Ozonide Clearance in Red Blood Cells

- Next Generation OZ are significantly more stable in whole blood *in vitro* than First Generation OZ
Key Pharmacology for OZ439: *Plasmodium berghei* Mouse Model (p.o.)

Single oral dose: 1x 30 mg/kg p.o.

<table>
<thead>
<tr>
<th>Compound (30 mg/kg)</th>
<th>Activity (%)†</th>
<th>Survival (d), Cure (%)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>92</td>
<td>9 d, 0%</td>
</tr>
<tr>
<td>AM</td>
<td>99.7</td>
<td>9 d, 0%</td>
</tr>
<tr>
<td>CQ</td>
<td>99.9</td>
<td>10 d, 0%</td>
</tr>
<tr>
<td>MEF</td>
<td>99.6</td>
<td>22 d, 0%</td>
</tr>
<tr>
<td>OZ277</td>
<td>99.9</td>
<td>11 d, 0%</td>
</tr>
<tr>
<td>OZ439</td>
<td>99.0</td>
<td>>30 d, 100%</td>
</tr>
<tr>
<td>Control</td>
<td>--</td>
<td>6 d, 0%</td>
</tr>
</tbody>
</table>

† % parasitemia on day 3 post infection
‡ % of mice that were parasite free on day 30

AS, AM, CQ and MEF do not cure in this model up to 200 mg/kg.

Onset & Recrudescence: 1x 100mg/kg p.o.
<table>
<thead>
<tr>
<th>Dose</th>
<th>Frequency</th>
<th>Avg Survival</th>
<th>Cures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 mg/kg</td>
<td>single dose</td>
<td>6</td>
<td>0/5</td>
</tr>
<tr>
<td>1 x 3 mg/kg</td>
<td>single dose</td>
<td>6</td>
<td>0/5</td>
</tr>
<tr>
<td>1 x 5 mg/kg</td>
<td>single dose</td>
<td>10.4</td>
<td>0/5</td>
</tr>
<tr>
<td>1 x 10 mg/kg</td>
<td>single dose</td>
<td>18.2</td>
<td>0/5</td>
</tr>
<tr>
<td>1 x 15 mg/kg</td>
<td>single dose</td>
<td>30</td>
<td>4/5</td>
</tr>
<tr>
<td>1 x 20 mg/kg</td>
<td>single dose</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>1 x 25 mg/kg</td>
<td>single dose</td>
<td>>30</td>
<td>5/6</td>
</tr>
<tr>
<td>1 x 30 mg/kg</td>
<td>single dose</td>
<td>>30</td>
<td>5/7</td>
</tr>
<tr>
<td>3 x 1 mg/kg</td>
<td>every 24 h</td>
<td>6</td>
<td>0/5</td>
</tr>
<tr>
<td>3 x 3 mg/kg</td>
<td>every 24 h</td>
<td>15.2</td>
<td>0/5</td>
</tr>
<tr>
<td>2 x 5 mg/kg</td>
<td>every 24 h</td>
<td>14.6</td>
<td>0/5</td>
</tr>
<tr>
<td>3 x 5 mg/kg</td>
<td>every 24 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>2 x 10 mg/kg</td>
<td>every 24 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>3 x 10 mg/kg</td>
<td>every 24 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>3 x 3 mg/kg</td>
<td>every 12 h</td>
<td>12.2</td>
<td>0/5</td>
</tr>
<tr>
<td>3 x 5 mg/kg</td>
<td>every 12 h</td>
<td>28.2</td>
<td>4/5</td>
</tr>
<tr>
<td>2 x 10 mg/kg</td>
<td>every 12 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>3 x 10 mg/kg</td>
<td>every 12 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>2 x 15 mg/kg</td>
<td>every 12 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
<tr>
<td>2 x 20 mg/kg</td>
<td>every 12 h</td>
<td>>30</td>
<td>5/5</td>
</tr>
</tbody>
</table>
In Vitro Degradation in Infected Blood

- Next Generation OZ significantly more stable in healthy and especially infected blood

![Graph showing degradation in healthy and infected blood](image-url)
OZ439 Exposure in Healthy and Infected *P. berghei* Mice

10 mg/kg po

Approximately 50% decrease in exposure in presence of infection

Half life still > 5-fold longer than that of OZ277 and Art derivatives at similar dose
Conclusions

• Fe(II)-mediated cleavage in RBCs contributes to the \textit{in vivo} clearance of RBx11160 (and possibly other peroxides)

• Structural modifications for Next Generation OZ have resulted in:
 – improved stability in blood
 – reduced \textit{in vivo} clearance, prolongation in half-life and increased exposure in rats
 – enhanced biological activity in well-established mouse model of malaria
 – excellent prophylactic activity in mice – exceeds that of the benchmark chemoprophylactic, mefloquine

• Potential for reduced treatment regimen
Timelines

Launch → Q4 2013
Partners

- **Medicinal and synthetic chemistry**
 University of Nebraska, USA

- *In vitro* activity and *in vivo* efficacy assessment
 Swiss Tropical Institute, Switzerland

- **ADME, lead optimisation and compound profiling**
 Monash University, Australia

- **Manufacturing and Formulation**
 Unimark Remedies, India, Wilmington Pharma, USA, Penn Pharmaceuticals UK

- **Project management and Consultants**
 Fulcrum, UK, Carl Craft and John Scott, USA

- **Medicines for Malaria Venture**
 Ian Bathurst and Jörg Möhrle
Thank you

Xie Xie