Plasmodium malariae and Plasmodium falciparum comparative susceptibility to antimalarial drugs in Mali

15 Jul 2021

Dembele L, Aniweh Y, Diallo N, Sogore F, Sangare CPO, Haidara AS, Traore A, Diakité SAS, Diakite M, Campo B, Awandare GA, Djimde AA

The Journal of antimicrobial chemotherapy
PMID: 34021751

Doi: 10.1093/jac/dkab133

Photo: Gerasimov_iStock

OBJECTIVES

To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs.

METHODS

We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691.

RESULTS

We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum.

CONCLUSIONS

Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.

To view the full article please visit the Journal of Antimicrobial Chemotherapy website