Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite Plasmodium falciparum and Optimization Efforts

25 Feb 2021

Le Manach C, Dam J, Woodland JG, Kaur G, Khonde LP, Brunschwig C, Njoroge M, Wicht KJ, Horatscheck A, Paquet T, Boyle GA, Gibhard L, Taylor D, Lawrence N, Yeo T, Mok S, Eastman RT, Dorjsuren D, Talley DC, Guo H, Simeonov A, Reader J, van der Watt M, Erlank E, Venter N, Zawada JW, Aswat A, Nardini L, Coetzer TL, Lauterbach SB, Bezuidenhout BC, Theron A, Mancama D, Koekemoer LL, Birkholtz LM, Wittlin S, Delves M, Ottilie S, Winzeler EA, von Geldern TW, Smith D, Fidock DA, Street LJ, Basarab GS, Duffy J, Chibale K

Journal of Medicinal Chemistry
PMID: 33573376

Doi: 10.1021/acs.jmedchem.1c00034

Photo: gerasimov_foto_174/Shutterstock.com

A novel diazaspiro[3.4]octane series was identified from a whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity.

To view the full article please visit the ACS Publications website