Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4

Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4

Ashton TD, Dans MG, Favuzza P, Ngo A, Lehane AM, Zhang X, Qiu D, Chandra Maity B, De N, Schindler KA, Yeo T, Park H, Uhlemann AC, Churchyard A, Baum J, Fidock DA, Jarman KE, Lowes KN, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE

There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.

To view the full article, please visit the ACS Publications website